NLANR, Internet2, and End-to-End performance

Scot Colburn
colburn@ucar.edu
National Center for Atmospheric Research

May 21-22 2001 Florianópolis, Brasil

Who is NCAR?

- **Operated by University Corporation for Atmospheric Research (UCAR)**
- Center for Climate & Meteorology research
 - * Global Climate Model
 - * Supercomputing
- **History of Internet** leadership

- * One of first nodes on ARPANET
- * Operate Internet2 GigaPop

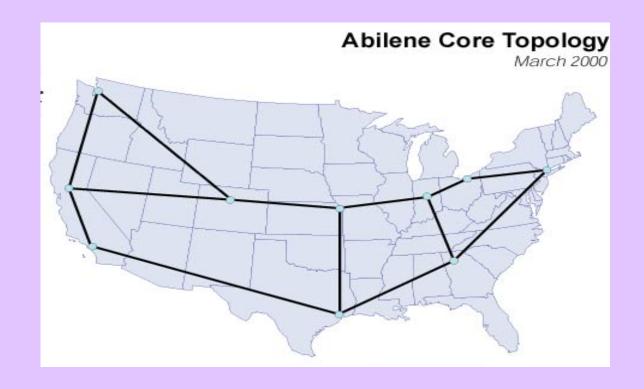
Why pursue End to End Performance?

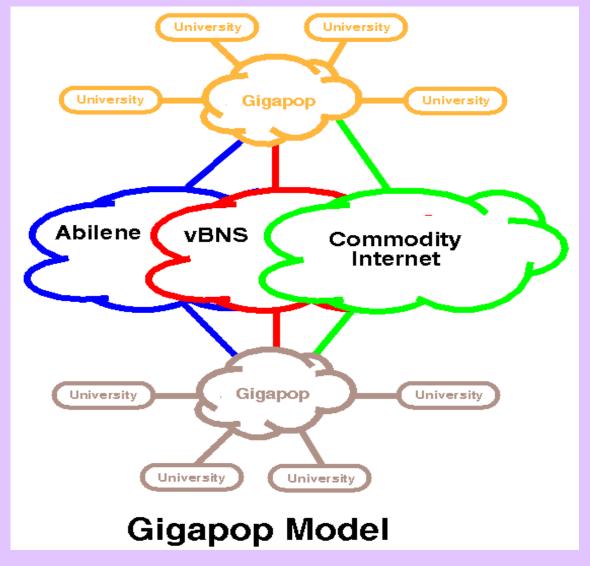
- Give users high performance networking
- Enable interactive "Collaboratories" "Collaborative laboratory"
- Enable "Access-grid" and "Earth-systems Grid"
- Move large scientific data-sets
- Provide good access to central resources

Who is solving the problem?

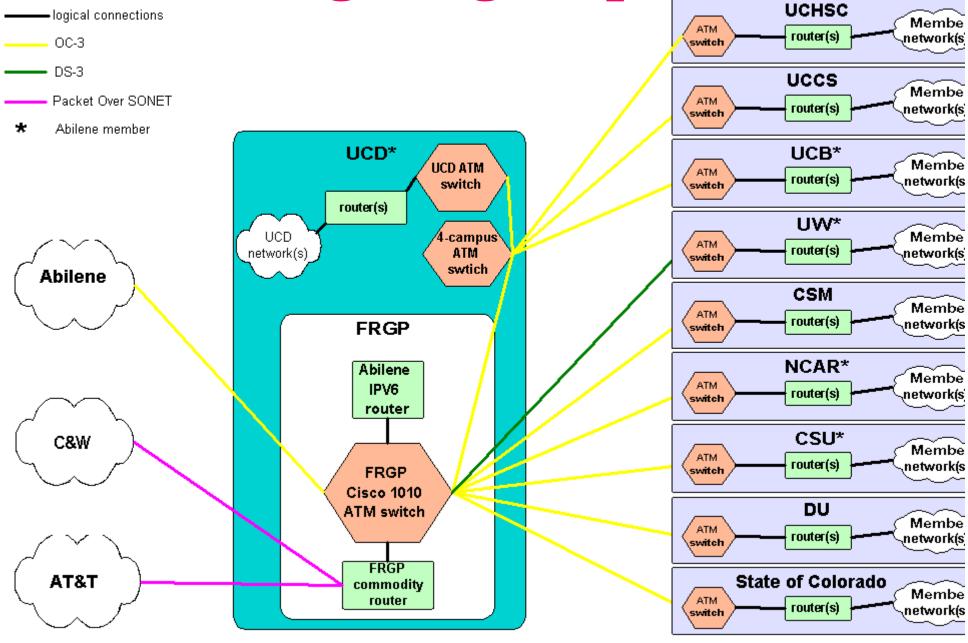
- NLANR National Laboratory for Applied Networking Research
 - * http://www.nlanr.net
- Internet2 End-to-End Performance Initiative
 - * http://www.internet2.edu/e2eperf/
 - * Web100 to move data fast

Who is NLANR?


- NLANR National Laboratory for **Applied Network Research**
 - * Application/User support (UIUC/NCSA)
 - » Autobuf, Iperf, nettest
 - * Engineering Services (CMU/PSC/NCAR)
 - » Web100, TAAD (Traffic Analysis and Automatic Diagnosis), TCP performance tools
 - * Measurement and Analysis(UCSD/SDSC)
 - » Passive Monitoring and Analysis (PMA)
 - » Active Measurement Program (AMP)
 - * Find them at www.nlanr.net


NLANR helps optimize fast networks

- **VBNS very high performance Backbone Network Service**
 - * built in 1995 by MCI-NSF partnership
 - * now vBNS+ is a commercial network
- Abilene, the Internet2 backbone
 - * Launched in 1999
 - * 180 universities, OC-48 backbone
 - * Built in partnership with Cisco and Nortel and Qwest


Abilene Network

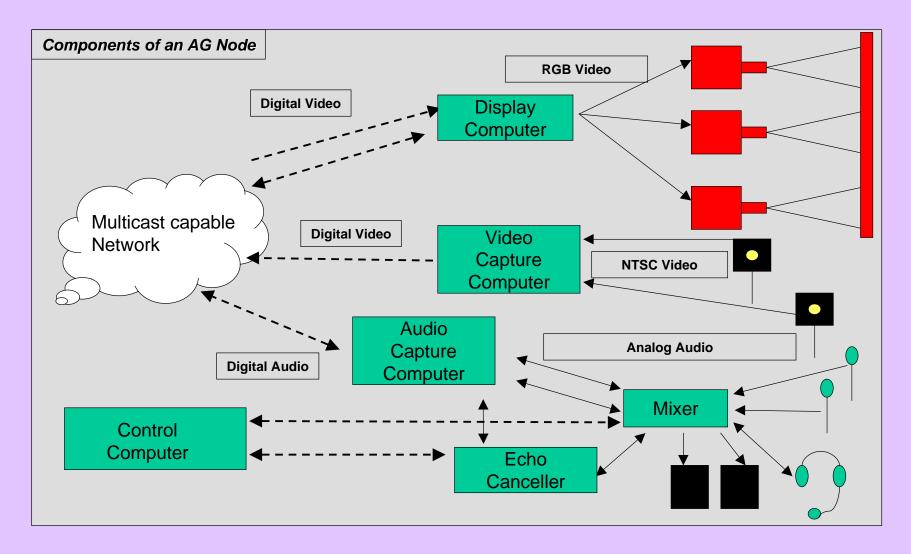
Networks link Gigapops

Front Range GigaPop

Who is Internet2?

- Universities doing advanced networking research.
- Groups researching QoS, IPv6, Multicast, Measurement, Routing, Security, Topology.
- Network Operations Center (NOC) run by Indiana University.

Cool Abilene/I2 URLs


- Abilene website
 - * http://www.ucaid.edu/abilene/
- Internet2 website
 - * http://www.internet2.edu/
- Abilene NOC at Indiana University
 - * http://www.abilene.iu.edu/index.cgi
- "Live" Internet2 traffic map
 - * http://hydra.uits.iu.edu/~abilene/traffic

Fast Networks Enable Cool Applications: Access-Grid

http://www-fp.mcs.anl.gov/fl/accessgrid/

- Group-to-group communications
- Meeting rooms with high-end audio and visual technology
- Collaborative access to computing **facilities**
- Developed by Argonne National Laboratories, University of Chicago

Access-Grid Node

Access-Grid installation at Argonne National Lab

Fast Networks enable Earth Systems Grid

- Accelerated Climate Prediction Initiative (ACPI) needs easy access to huge data sets
- Earth Systems Grid (ESG) will provide flexible distributed data analysis and high-speed data transport between climate research centers.
- ESG is sponsored by Department of Energy (DOE)

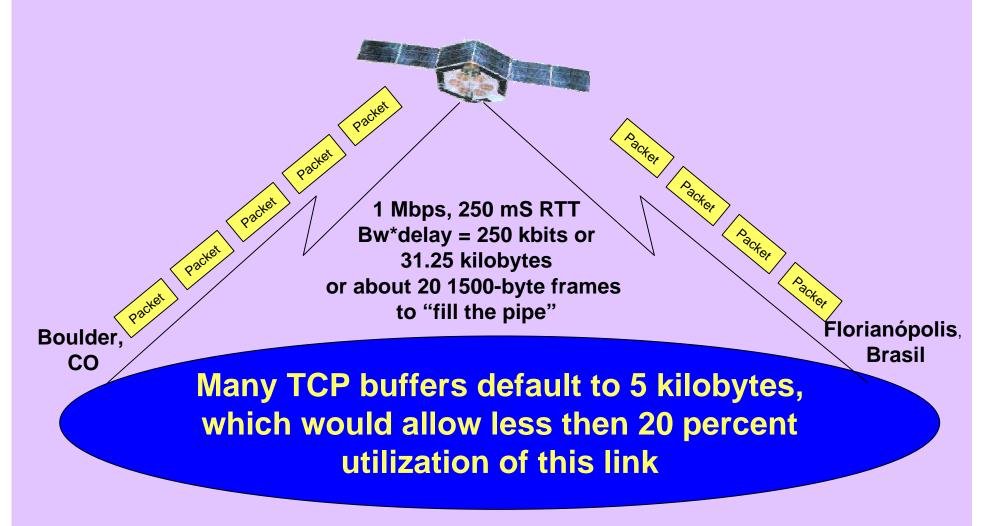
http://www.scd.ucar.edu/css/esg/

Earth Systems Grid

Earth Systems Grid built with expertise and existing code from:

- Distributed-Parallel Storage System (DPSS)
- Globus computation grid
- Storage Access Coordination System (STACS)
- Program for Climate Model Diagnosis and Intercomparison (PCMDI)

End-to-End performance problem remains


- Despite powerful networks, applications don't get optimal throughput.
- Many scientists would be happy just to get good FTP performance.
- Problem often lies in the implementation of TCP (Transmission Control Protocol).
- TCP usually doesn't provide adequate buffer space for high-performance transfers.

How to increase network performance

- Decrease packet loss
- Increase link bandwidth
- Increase Maximum Segment Size
- Decrease Round-Trip-Time

But a fast network is not enough...

Bandwidth-Delay Problem

The Wizard Gap

- The "Wizard Gap" the performance difference between well-tuned and non-tuned TCP sessions has increased from 3:1 to 300:1 in the last ten years.
- Today, a well tuned connection may carry 1 Gbps, while a non-tuned connection will get 3 Mbps.

from Matt Mathis at NLANR/I2 Joint Techs conference, http://www.psc.edu/~mathis/papers/JTechs200105/index.html

Bandwith-delay solutions

- Manually set TCP buffer size in application
 - * tedious
- Manually set TCP buffer size in OS
 - * wasteful of memory
- Auto-tune in application
 - * application specific

Can't we automate this?

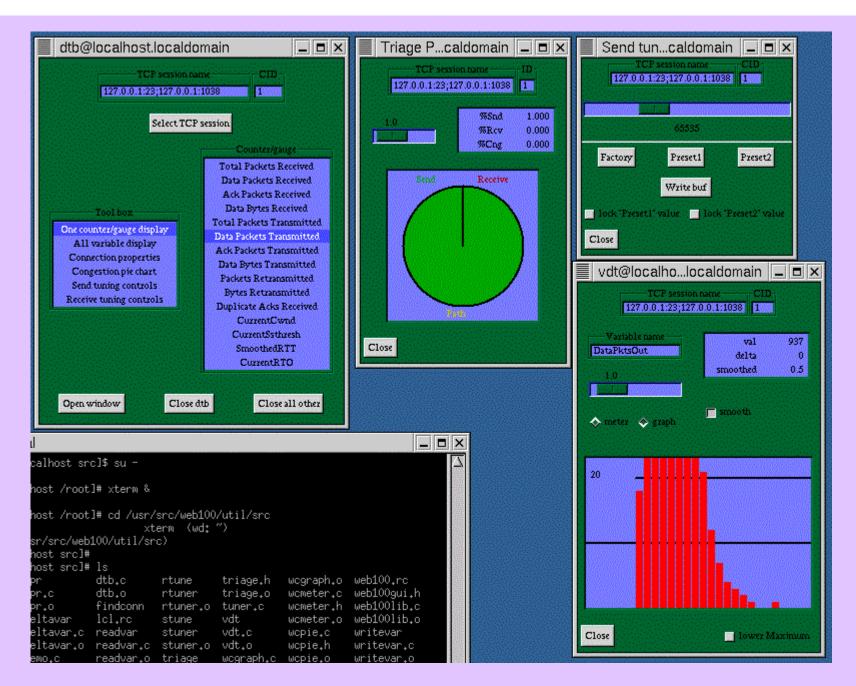
Web100 moves data fast

- Web100 is a Cisco sponsored, NSF funded partnership between NCAR, NCSA, and PSC.
- Seeks ubiquitous deployment of fast TCP code.
- Instruments the TCP stack.
- **Exposes TCP stack values.**
- Extends and integrates TCP improvements, primarily auto-tuning of TCP transmit and receive buffer sizes.

The Web100 Solution

- Implement per-session TCP MIB in kernel
- Similar to UNIX *netstat* information, but more variables and more useful information
- Write-variables will allow user-level TCPsession performance tuning based on realtime congestion feedback from TCP session
- Also allows multitude of user-level display and diagnostic tools regarding TCP behavior during real-time

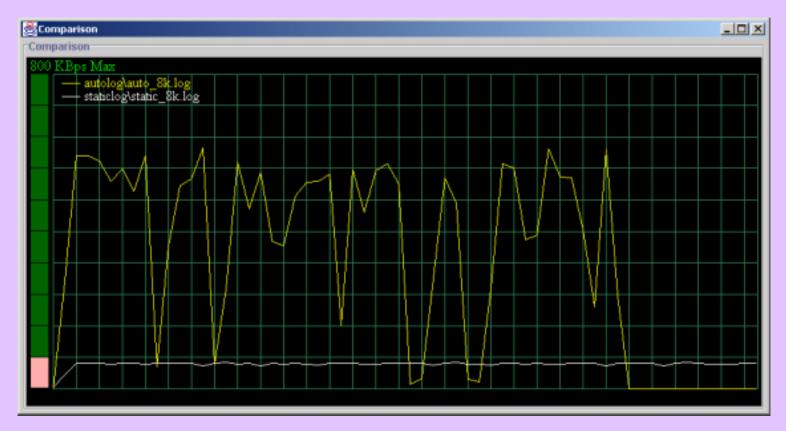
Web100 Implementation


- -1,200 diff lines against Linux 2.2.14
- API is through /proc virtual filesystem and/or kernel hooks
- About 25 variables readable
- Counters updated continuously in kernel; /proc updates each time accessed
- One instance of data structure for each TCP session in /proc
- curses and gtk demo/example interfaces

Web100 Sample Demo Output

128.182.61.238.22 <-> 128.182.61.156.1022					ESTABLISHED	
PktsIn	1974	PktsOut	1951	Enabled:		
DataPktsIn	972	DataPktsOut	1002	SACK N		
AckPktsIn	1975	AckPktsOut	949	ECN N		
DataBytesIn	19823	DataBytesOut	74651	Timestamps N		
DupAcksIn	0	PktsRetran	0			
		BytesRetran	0			
loss episodes	0	+ cwnd	1453792	+ winscale rcvd	0	
timeouts	0	max cwnd			986816	
TO after FR	0	ssthresh	0	max rwin rcvd	986880	
		min ssthresh	0	winscale sent	0	
		max ssthresh	0	rwin sent	32120	
		İ		max rwin sent		
rto (ms)	•	+ (ms)	1 mss	+ 1448 Rate		
min rto (ms)		rtt (ms)	0 min ms		bps) 0.1	
max rto (ms)	20 max	rtt (ms)	1 max mss	s 1448 In (k	bps) 0.0	
	+		+			

Receiver: (S) topped, (A)pp, (B) ufsize / Path: (C) ongestion / Sender: (b) ufsize, (a)pp


Web100 still under construction

- No public release yet current version Alpha0.2. Will be open source eventually.
- 16 Alpha testers.
- Expect iterative improvement from user feedback.
- No Autotuning yet, but manual viewing/setting of variables possible.
- Web100 URL: http://www.web100.org

Other NLANR TCP tuning tools

- Available from NLANR DAST -**Distributed Applications Support Team**
- **Autobuf** autotuning FTP server and client
 - * tests link with ICMP before file transfer
 - * modified NcFTP client, WuFTP server
- **Iperf Internet Performance tester**
 - * Version 1.2 recommends TCP window sizes
 - * TCP and "raw" UDP transmission tests

AutoNcFTP

- 583% performance enhancement
- http://dast.nlanr.net/Features/Autobuf/

Questions? Perguntas?

colburn@ucar.edu