
Integrating IP TraÆc Flow Measurement: Overview

Marcelo Pias� Juergen Quitteky Marcus Brunnery Jon Crowcroft�

�University College London (UCL)

Department of Computer Science

Gower Street, London WC1E 6BT, UK

yNEC Europe Ltd.

C&C Research Laboratories

Adenauerplatz 6, 69115 Heidelberg, Germany

Abstract

In this short paper we present an overview of a work being discussed within the IETF in the area
of
ow measurements. We aim to discuss it and get feedback from the research/industry community
in Brazil. At the same time, we want to identify where our work might be useful within the RNP2
(Internet2) groups. Those currently working within areas such as QoS, traÆc measurements (IPv4 and
IPv6) and policy-based network management may �nd this work relevant.

Keywords: Flow measurement, IETF RTFM architecture, Accounting, Charging, QoS, Policy-based
network management

1 Introduction

The IETF working group on Realtime TraÆc Flow Measurements (RTFM) has developed an architecture [8]
de�ning components of traÆc
ow measurements systems and their interactions. Such components include
a meter collecting traÆc
ow data, a reader obtaining
ow data from the meter for further processing, and
a manager which con�gures meters and readers.

Concerning the speci�cation of
ows to be measured, the architecture is very powerful. Each meter
contains a programmable packet matching engine (PME), deciding what to do with observed packets. TraÆc

ows are speci�ed by providing code for the engine. Available instructions, called rules, include matching
conditions for single �elds of the packets, conditional jumps, etc. A set of rules specify one or more
ows
to be metered. A meter may contain several rule sets with each of them being executed for each observed
packet. While being a powerful and
exible method for specifying traÆc
ows, creating rule sets is also
non-trivial and potentially complex.

When someone wants to perform precise and elaborated measurements of a network, it is appropriate
and acceptable to develop a rule set matching his requirements manually in a few hours or a few days.
However, when traÆc
ow measurement is only one component of a large management system and should
be con�gured dynamically, then the procedural speci�cation by rule sets is not adequate anymore.

At UCL and NEC we have observed this shortcoming of the RTFM architecture independently in several
projects, where traÆc
ow measurements were to be integrated into management applications. In each of
those projects, we solved the problem by developing a high-level abstraction layer o�ering to the particular
management application exactly the required functionality and hiding the rest of the complexity. After doing
this several times at both places we decided to jointly use our experiences for developing a more general
abstraction of the RTFM architecture.

1

2 Applications Requiring TraÆc Measurement

In a general view, we see two categories of applications using the RTFM architecture:

1. Plain (standalone) traÆc measurement

This kind of application is well supported by the architecture. The rule sets are created manually or
with SRL [6] to be uploaded into the meter. The metered data is collected by the readers and stored
(e.g. in a �le) for further processing.

2. Applications with integrated traÆc measurement

Applications that require the automatic generation of rule sets and measurement data collection for
immediate processing. The support by the RTFM architecture for those applications is not suÆcient.
Therefore, we understand that using a library is the suitable approach for the integration of applications
and the RTFM architecture. The library should provide a functional and easy to use interface.

Two scenarios belonging to the second category are described below. The scenarios motivate the suggested
interface for integrating traÆc measurement into applications. The �rst scenario deals with accounting and
charging for QoS. The subject of the second one is policy-based network management.

M

Provider "1" Premises

DAC

Network

Customer "A" Premises

Meter
Data

Customer "B" Premises Customer "x" Premises

M

Network

M

Multicast or Unicast Channels

Provider "2" Premises Provider "y" Premises

DAC

Tariff
Translator

Meter
Policies:t1

Accounting
Data

Accounting
Data

Provider1
Tariff1:t1

Provider1
Tariff2:t2

Provider n:
Tariff m

M

Meter
Policies:t2

Meter
Policies:t1

(1)

(2)

(3)

(4)

(5)

 Dynamic Accounting Controller(DAC)

Meter

Control Channel

Data Channel

Both Channels

Legend:

 Aggregated accounting/metering data

Figure 1: QoS Charging Scenario

2

2.1 Scenario 1: Accounting and Charging for QoS

In the scenario illustrated by Fig. 1, a service provider multicasts tari� objects to all accounting modules for
his customers (1). Once a customer accounting module has received a tari�, it loads dynamically a module
called Tari� Translator (TT) in order to perform a translation to appropriate Meter Policies (MP) (2,3).
Thus, the MP is a set of ECA (Event-Condition-Action) generic policies derived from the tari�. It speci�es
explicitly/implicitly accounting/metering requirements. After that, the MP is transformed to meter speci�c
control and uploaded into a meter. For the RTFM architecture, the meter control is a rule set as described
in [8].

The provider/customer collect the accounting data from meters either using one of the following modes
(4,5):

1. Pull Mode or Proactive: a reader polls the meter periodically in order to gather metered data, usually
through a request/reply mechanism.

2. Push Mode or Reactive: a meter pushes out data to a set of readers/collectors registered as listeners
when a pre-de�ned event occurs. We have identi�ed so far some categories of events as follows:

� packet-related (e.g. set of packets arrival),

� temporal (e.g. clock timeout),

� protocol-related (speci�c TCP stream)...

Finally, the bill is generated using the logic within the tari�. The translation performed in steps (2,3)
has derived the accounting requirements. Therefore, the collected data from the meters is one form of input
to calculate the usage charge. Other inputs might be derived from the marketing and business strategies of
the service provider.

Each customer accounting module makes use of an API in order to cope with con�guration and data
collection. All the logic of those processes are encapsulated by the implementation of two partial interfaces
which composes this API. One for control and another for data.

Application

RTFM Interface

RTFM Architecture

Control
(Meter Policies)

Data
(Pull or Push Mode)

Control
(Ruleset)

Data
(Pull Mode)

Figure 2: RTFM Abstraction Layer: Interface

The interface de�nes an abstract programming model for the RTFM architecture, which hides several
details not easy understandable by application programmers. An implementation of the interface establishes
an abstraction layer between the application and the RTFM architecture (Fig. 2).

2.2 Scenario 2: Policy-based Network Management

The subject of the second scenario is policy-based network management. Core components of a policy-based
network management system are policy decision points (PDPs) and policy enforcement points (PEPs) [10].

3

Network Node

PEP PDP

May monitor the network

May use LDAP, SNMP,... for accessing
policy database, authentication, etc.

Policy Server

Figure 3: Policy Server Scenario

The PEP is located at a network node and enforces policy decision made by the PDP. Decisions of
the PDP are based on policy rules stored at policy databases and on the current state of the managed
network. Policy decisions may be triggered by requests of a PEP, by user interaction, or by other events in
the monitored network (Fig. 3)

This includes two cases where traÆc measurement functionality is required:

1. A policy may depend on current traÆc information, e.g. the decision on whether a user is allowed to
open a new connection may depend on the traÆc volume he already produced. In this case, the policy
server must be able to retrieve accounting information for that particular user.

The requirement of the PDP application is similar to the pull mode in the �rst scenario. Loading
a policy depending on transferred data volume from the policy database corresponds to the Tari�
multicast. After parsing the policy, the PDP must initiate traÆc measurements for all users a�ected
by the policy, in order to have measured data available when needed. Therefore, it con�gures one or
more traÆc meters. When a decision has to be made, the PDP collects traÆc data in pull mode.

2. The second case corresponds to case 2 (push mode) of the �rst scenario. A policy decision of the PDP,
e.g. to recon�gure resource reservations, is triggered by traÆc events, e.g. if the bandwidth or volume
of a particular user exceeds a given limit.

In this case, the PDP receives traÆc information in push mode. An active entity monitoring traÆc
must notify the PDP.

Also for this scenario an interface establishing an abstract layer between the application (the PDP) and
the RTFM architecture appears to be desirable. As in the �rst scenario, the interface hides details of traÆc
measurements, and o�ers functions for control and push/pull data transfer.

2.3 Requirements for Integrating TraÆc Flow Measurement

The following requirements were identi�ed and are addressed in this document:

1. Applications should be able to control traÆc measurements at a high level of abstraction from the
RTFM architecture. The level of abstraction should be as high as possible, but at the same time it
should be as low as necessary for providing suÆcient functionality.

2. Applications should be able to gather measured traÆc data in pull and push mode at a high level of
abstraction. Again, the level of abstraction should be as high as possible and as low as necessary.

3. The functionality provided at the interface should be suÆciently generic to support di�erent kinds of
traÆc measurement applications including Accounting and Charging, QoS monitoring as well as plain
traÆc measurement applications.

4

3 TraÆc Flow Measurement Interface

This section describes our proposal for an application-oriented high-level interface to the RTFM architecture.
We �rst discuss a declarative
ow model comparing it to the procedural model of the RTFM architecture.
Then, we explain the notation used in the following semi-formal description of the interface. At the end of
this section, we brie
y summarize our implementation experiences.

3.1 Declarative Flow Model

One issue arising from requirement 1 of Subsection 2.3 is the speci�cation of
ows to be measured.
A speci�cation by rule sets as de�ned by the RTFM architecture is rather complicated and error-prone,

because it is a procedural speci�cation. Rule sets are sequences of instructions to be executed by the pattern
matching engine within the meter. A
ow is speci�ed by the results of the execution of this procedure for
all possible packet headers passing through the meter.

This is not well suited for an application that needs to generate rule sets automatically. Thus, a declarative
speci�cation of
ows has been chosen. A
ow speci�cation consists of a list of attribute constraints which
may be exact, wild-carded or generic. The latter one may generate more than one
ow table entry out of a
single
ow description. Note that we term
ow speci�cation and
ow description in an interchangeable way.
Thus, they refer to the same concept, although sometimes called di�erently.

Implementations of the RTFM interface have to provide the functionality of translating declarative
ow
speci�cations into procedural rule sets.

3.2 Interface Speci�cation (Overview)

The interface speci�cation is open to be implemented as API or as network protocol. The interface consists
of �ve groups: FlowDescription, FlowAttribute, FlowRecord, Manager, Reader, and Meter. Each group
contains a data structure and a set of functions on those data structures. In the case of FlowDescription
and FlowAttribute the data structures are the more relevant part. On the other hand, the o�ered functions
are of more importance for for Manager, Reader, and Meter.

The FlowDescription data structure speci�es a single
ow or a set of di�erent
ows to be metered. The
FlowAttribute data structure describes a single attribute of a
ow by an identi�er and value. Within the
interface de�nition, mostly sets of FlowAttribute data structures are used. The Manager, Reader, and Meter
model well known components of the RTFM architecture.

Group Name Description

FlowDescription Specifies a single flow or a set of different flows.

FlowAttribute Simple pair of an attribute ID and value.

Meter Used for meter identification

Manager Provides functionality of a RTFM Manager

Reader Offers means for collecting data (pull or push modes)

FlowRecord Data record generated by the FlowDescription installed in a Meter

Table 1: Interface Groups

Further information on the interface speci�cation may be found in [3] [4].

3.3 Implementation

We have implemented the interface independently at NEC and UCL. The NEC implementation is a contribution
to European research projects including the IST MobiVAS projects sponsored by the European Union.

Both implementations were made in Java. At NEC the NeTraMet software of Nevil Brownlee and the
jmgmt package of Sven Doerr were used. NeTraMet and jmgmt are free available.

The UCL implementation sponsored by British Telecommunications (BT Labs,UK) has also used NeTraMet.
It was necessary to port NeTraMet to Windows (98,NT,2000) platforms in order to cope with the metering

5

at customers premises (Fig. 1). Also, it was added to NeTraMet support for ECN (explicit congestion
noti�cation) [11] [5] for congestion-based tari�s. A preliminary version of this implementation was used
within internal projects at BT and as a support measurement platform in the project P906-Quasimodo from
the European Telecom companies consortium (Eurescom).

Practical experiences in the mentioned projects showed that the interface matches the requirements listed
in Section 2.3. The abstraction is suÆciently high to get a very easy integration of traÆc
ow measurement
into an application. Pull and push modes of data collection is supported and the functionality was suÆcient
for several applications.

4 Future Work

The future usage for the UCL implementation includes: (a) Market Managed Multiservice Internet (M3I)
[9] when traÆc metering is necessary in order to build speci�c scenarios; (b) UCL project funded by the
Internet2 consortium [2] which aims to do trials for the M3I project.

5 Conclusion

We have described an application-oriented high-level interface to the IETF RTFM architecture. It simpli�es
the integration of traÆc
ow measurement into network and service management applications.

We motivated our work by describing application scenarios of management applications requiring integration
of traÆc
ow measurement. From those scenarios we derived requirements for an application-oriented
interface.

The presented interface matches those requirements. It replaces the complex procedural
ow model of
the RTFM architecture by a much simpler declarative one. Furthermore, it hides several details of the RTFM
architecture.

Applications using our interface are able to control traÆc measurements easily at a high level of abstraction.
Still, they have suÆcient functionality available. They can collect measured
ow data either in pull or push
modes.

The feasibility of the interface has been proven by the independent implementations. The use of those
implementations in di�erent projects also proved, that the interface is suÆciently generic for a wide range
of applications.

[]

References

[1] Bob Briscoe, Mike Rizzo, Jerome Tassel, Kostas damianakis, and Nicolai Guba. Lightweight Policing
and Charging for Packet Networks. In Third IEEE Conference on Open Architectures and Network

Programming - OpenArch 2000, March 2000.

[2] Internet2. Internet2 Consortium. URL: http://www.internet2.org/.

[3] Juergen Quittek and Marcelo Pias. A high-level application-oriented interface to the traÆc
ow
measurement architecture (RTFM). IETF I-D, work in progress, October 2000.

[4] Juergen Quittek, Marcelo Pias, and Marcus Brunner. Integrating IP TraÆc Flow Measurement. In
PAM2001: Passive and Active Measurements Workshop. Amsterdam, March 2001.

[5] K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion Noti�cation (ECN) to IP.
IETF, RFC2481, January 1999.

[6] N. Brownlee. SRL: A Language for Describing TraÆc Flows and Specifying Actions for Flow Groups.
IETF, RFC2723, October 1999.

[7] N. Brownlee. TraÆc Flow Measurement: MIB. IETF,RFC2720, October 1999.

6

[8] N. Brownlee, C. Mills, and G. Ruth. TraÆc Flow Measurement: Architecture. IETF, RFC2722, October
1999.

[9] M3I Project. M3I - Market Managed Multiservice Internet. URL: http://www.m3i.org/.

[10] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admission Control". IETF,
RFC2753, January 2000.

[11] S. Floyd. TCP and Explicit Congestion Noti�cation. In ACM Computer Communication Review,
volume 24, October 1994.

[12] S. Handelman, S. Stibler, and N. Brownlee. RTFM: New Attributes for TraÆc Flow Measurement.
IETF,RFC2724, October 1999.

7

