Integrating IP Traffic Flow Measurement: Overview

Marcelo Pias*  Juergen Quittek! Marcus Brunner’  Jon Crowcroft*

*University College London (UCL) fNEC Europe Ltd.
Department of Computer Science C&C Research Laboratories
Gower Street, London WCI1E 6BT, UK Adenauerplatz 6, 69115 Heidelberg, Germany
Abstract

In this short paper we present an overview of a work being discussed within the IETF in the area
of flow measurements. We aim to discuss it and get feedback from the research/industry community
in Brazil. At the same time, we want to identify where our work might be useful within the RNP2
(Internet2) groups. Those currently working within areas such as QoS, traffic measurements (IPv4 and
IPv6) and policy-based network management may find this work relevant.

Keywords: Flow measurement, IETF RTFM architecture, Accounting, Charging, QoS, Policy-based
network management

1 Introduction

The IETF working group on Realtime Traffic Flow Measurements (RTFM) has developed an architecture [8]
defining components of traffic flow measurements systems and their interactions. Such components include
a meter collecting traffic flow data, a reader obtaining flow data from the meter for further processing, and
a manager which configures meters and readers.

Concerning the specification of flows to be measured, the architecture is very powerful. Each meter
contains a programmable packet matching engine (PME), deciding what to do with observed packets. Traffic
flows are specified by providing code for the engine. Available instructions, called rules, include matching
conditions for single fields of the packets, conditional jumps, etc. A set of rules specify one or more flows
to be metered. A meter may contain several rule sets with each of them being executed for each observed
packet. While being a powerful and flexible method for specifying traffic flows, creating rule sets is also
non-trivial and potentially complex.

When someone wants to perform precise and elaborated measurements of a network, it is appropriate
and acceptable to develop a rule set matching his requirements manually in a few hours or a few days.
However, when traffic flow measurement is only one component of a large management system and should
be configured dynamically, then the procedural specification by rule sets is not adequate anymore.

At UCL and NEC we have observed this shortcoming of the RTFM architecture independently in several
projects, where traffic flow measurements were to be integrated into management applications. In each of
those projects, we solved the problem by developing a high-level abstraction layer offering to the particular
management application exactly the required functionality and hiding the rest of the complexity. After doing
this several times at both places we decided to jointly use our experiences for developing a more general
abstraction of the RTFM architecture.



2 Applications Requiring Traffic Measurement
In a general view, we see two categories of applications using the RTFM architecture:

1. Plain (standalone) traffic measurement

This kind of application is well supported by the architecture. The rule sets are created manually or
with SRL [6] to be uploaded into the meter. The metered data is collected by the readers and stored
(e.g. in a file) for further processing.

2. Applications with integrated traffic measurement

Applications that require the automatic generation of rule sets and measurement data collection for
immediate processing. The support by the RTFM architecture for those applications is not sufficient.
Therefore, we understand that using a library is the suitable approach for the integration of applications
and the RTFM architecture. The library should provide a functional and easy to use interface.

Two scenarios belonging to the second category are described below. The scenarios motivate the suggested
interface for integrating traffic measurement into applications. The first scenario deals with accounting and
charging for QoS. The subject of the second one is policy-based network management.

Customer "A" Premises

Network Legend:

[ Dynamic Accounting Controller(DAC)
<«— Control Channel
: <---» Data Channel
<--+ Both Channels
(3) 9 Meter

3 Aggregated accounting/metering data

Meter
' Policies:tl

CUSIOITIBI' "B" Premises Customer "X" Premlses

,'/
(5) .
Data

Provider "2"/Premises Provider "y"fPremises

m e

@@@

Network

Figure 1: QoS Charging Scenario



2.1 Scenario 1: Accounting and Charging for QoS

In the scenario illustrated by Fig. 1, a service provider multicasts tariff objects to all accounting modules for
his customers (1). Once a customer accounting module has received a tariff, it loads dynamically a module
called Tariff Translator (TT) in order to perform a translation to appropriate Meter Policies (MP) (2,3).
Thus, the MP is a set of ECA (Event-Condition-Action) generic policies derived from the tariff. It specifies
explicitly /implicitly accounting/metering requirements. After that, the MP is transformed to meter specific
control and uploaded into a meter. For the RTFM architecture, the meter control is a rule set as described
in [8].

The provider/customer collect the accounting data from meters either using one of the following modes
(4,5):

1. Pull Mode or Proactive: a reader polls the meter periodically in order to gather metered data, usually
through a request/reply mechanism.

2. Push Mode or Reactive: a meter pushes out data to a set of readers/collectors registered as listeners
when a pre-defined event occurs. We have identified so far some categories of events as follows:

e packet-related (e.g. set of packets arrival),
e temporal (e.g. clock timeout),

e protocol-related (specific TCP stream)...

Finally, the bill is generated using the logic within the tariff. The translation performed in steps (2,3)
has derived the accounting requirements. Therefore, the collected data from the meters is one form of input
to calculate the usage charge. Other inputs might be derived from the marketing and business strategies of
the service provider.

Each customer accounting module makes use of an API in order to cope with configuration and data
collection. All the logic of those processes are encapsulated by the implementation of two partial interfaces
which composes this API. One for control and another for data.

Application

Control
(Meter Policies)

RTFM Interface

Control
(Ruleset)

Data
(Pull or Push Mode)

Data
(Pull Mode)

RTEM Architecture

Figure 2: RTFM Abstraction Layer: Interface

The interface defines an abstract programming model for the RTFM architecture, which hides several
details not easy understandable by application programmers. An implementation of the interface establishes
an abstraction layer between the application and the RTFM architecture (Fig. 2).

2.2 Scenario 2: Policy-based Network Management

The subject of the second scenario is policy-based network management. Core components of a policy-based
network management system are policy decision points (PDPs) and policy enforcement points (PEPs) [10].



Policy Server

Network Node

>
»-

PDP May use LDAP, SNMP,... for accessing
policy database, authentication, etc.

PEP

A
A 4

>
»-

May monitor the network

Figure 3: Policy Server Scenario

The PEP is located at a network node and enforces policy decision made by the PDP. Decisions of
the PDP are based on policy rules stored at policy databases and on the current state of the managed
network. Policy decisions may be triggered by requests of a PEP, by user interaction, or by other events in
the monitored network (Fig. 3)

This includes two cases where traffic measurement functionality is required:

1. A policy may depend on current traffic information, e.g. the decision on whether a user is allowed to
open a new connection may depend on the traffic volume he already produced. In this case, the policy
server must be able to retrieve accounting information for that particular user.

The requirement of the PDP application is similar to the pull mode in the first scenario. Loading
a policy depending on transferred data volume from the policy database corresponds to the Tariff
multicast. After parsing the policy, the PDP must initiate traffic measurements for all users affected
by the policy, in order to have measured data available when needed. Therefore, it configures one or
more traffic meters. When a decision has to be made, the PDP collects traffic data in pull mode.

2. The second case corresponds to case 2 (push mode) of the first scenario. A policy decision of the PDP,
e.g. to reconfigure resource reservations, is triggered by traffic events, e.g. if the bandwidth or volume
of a particular user exceeds a given limit.

In this case, the PDP receives traffic information in push mode. An active entity monitoring traffic
must notify the PDP.

Also for this scenario an interface establishing an abstract layer between the application (the PDP) and
the RTFM architecture appears to be desirable. As in the first scenario, the interface hides details of traffic
measurements, and offers functions for control and push/pull data transfer.

2.3 Requirements for Integrating Traffic Flow Measurement

The following requirements were identified and are addressed in this document:

1. Applications should be able to control traffic measurements at a high level of abstraction from the
RTFM architecture. The level of abstraction should be as high as possible, but at the same time it
should be as low as necessary for providing sufficient functionality.

2. Applications should be able to gather measured traffic data in pull and push mode at a high level of
abstraction. Again, the level of abstraction should be as high as possible and as low as necessary.

3. The functionality provided at the interface should be sufficiently generic to support different kinds of
traffic measurement applications including Accounting and Charging, QoS monitoring as well as plain
traffic measurement applications.



3 Traffic Flow Measurement Interface

This section describes our proposal for an application-oriented high-level interface to the RTFM architecture.
We first discuss a declarative flow model comparing it to the procedural model of the RTFM architecture.
Then, we explain the notation used in the following semi-formal description of the interface. At the end of
this section, we briefly summarize our implementation experiences.

3.1 Declarative Flow Model

One issue arising from requirement 1 of Subsection 2.3 is the specification of flows to be measured.

A specification by rule sets as defined by the RTFM architecture is rather complicated and error-prone,
because it is a procedural specification. Rule sets are sequences of instructions to be executed by the pattern
matching engine within the meter. A flow is specified by the results of the execution of this procedure for
all possible packet headers passing through the meter.

This is not well suited for an application that needs to generate rule sets automatically. Thus, a declarative
specification of flows has been chosen. A flow specification consists of a list of attribute constraints which
may be exact, wild-carded or generic. The latter one may generate more than one flow table entry out of a
single flow description. Note that we term flow specification and flow description in an interchangeable way.
Thus, they refer to the same concept, although sometimes called differently.

Implementations of the RTFM interface have to provide the functionality of translating declarative flow
specifications into procedural rule sets.

3.2 Interface Specification (Overview)

The interface specification is open to be implemented as API or as network protocol. The interface consists
of five groups: FlowDescription, FlowAttribute, FlowRecord, Manager, Reader, and Meter. Each group
contains a data structure and a set of functions on those data structures. In the case of FlowDescription
and FlowAttribute the data structures are the more relevant part. On the other hand, the offered functions
are of more importance for for Manager, Reader, and Meter.

The FlowDescription data structure specifies a single flow or a set of different flows to be metered. The
FlowAttribute data structure describes a single attribute of a flow by an identifier and value. Within the
interface definition, mostly sets of FlowAttribute data structures are used. The Manager, Reader, and Meter
model well known components of the RTFM architecture.

| Group Name || Description |
FlowDescription Specifies a single flow or a set of different flows.
FlowAttribute Simple pair of an attribute ID and value.
Meter Used for meter identification
Manager Provides functionality of a RTFM Manager
Reader Offers means for collecting data (pull or push modes)
FlowRecord Data record generated by the FlowDescription installed in a Meter

Table 1: Interface Groups

Further information on the interface specification may be found in [3] [4].

3.3 Implementation

We have implemented the interface independently at NEC and UCL. The NEC implementation is a contribution
to European research projects including the IST MobiVAS projects sponsored by the European Union.

Both implementations were made in Java. At NEC the NeTraMet software of Nevil Brownlee and the
jmgmt package of Sven Doerr were used. NeTraMet and jmgmt are free available.

The UCL implementation sponsored by British Telecommunications (BT Labs,UK) has also used NeTraMet.
It was necessary to port NeTraMet to Windows (98,NT,2000) platforms in order to cope with the metering



at customers premises (Fig. 1). Also, it was added to NeTraMet support for ECN (explicit congestion
notification) [11] [5] for congestion-based tariffs. A preliminary version of this implementation was used
within internal projects at BT and as a support measurement platform in the project P906-Quasimodo from
the European Telecom companies consortium (Eurescom).

Practical experiences in the mentioned projects showed that the interface matches the requirements listed
in Section 2.3. The abstraction is sufficiently high to get a very easy integration of traffic flow measurement
into an application. Pull and push modes of data collection is supported and the functionality was sufficient
for several applications.

4 Future Work

The future usage for the UCL implementation includes: (a) Market Managed Multiservice Internet (M3I)
[9] when traffic metering is necessary in order to build specific scenarios; (b) UCL project funded by the
Internet2 consortium [2] which aims to do trials for the M3I project.

5 Conclusion

We have described an application-oriented high-level interface to the IETF RTFM architecture. It simplifies
the integration of traffic flow measurement into network and service management applications.

We motivated our work by describing application scenarios of management applications requiring integration
of traffic flow measurement. From those scenarios we derived requirements for an application-oriented
interface.

The presented interface matches those requirements. It replaces the complex procedural flow model of
the RTFM architecture by a much simpler declarative one. Furthermore, it hides several details of the RTFM
architecture.

Applications using our interface are able to control traffic measurements easily at a high level of abstraction.
Still, they have sufficient functionality available. They can collect measured flow data either in pull or push
modes.

The feasibility of the interface has been proven by the independent implementations. The use of those
implementations in different projects also proved, that the interface is sufficiently generic for a wide range
of applications.

[

References

[1] Bob Briscoe, Mike Rizzo, Jerome Tassel, Kostas damianakis, and Nicolai Guba. Lightweight Policing
and Charging for Packet Networks. In Third IEEE Conference on Open Architectures and Network
Programming - OpenArch 2000, March 2000.

[2] Internet2. Internet2 Consortium. URL: http://www.internet2.org/.

[3] Juergen Quittek and Marcelo Pias. A high-level application-oriented interface to the traffic flow
measurement architecture (RTFM). IETF I-D, work in progress, October 2000.

[4] Juergen Quittek, Marcelo Pias, and Marcus Brunner. Integrating IP Traffic Flow Measurement. In
PAM2001: Passive and Active Measurements Workshop. Amsterdam, March 2001.

[5] K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion Notification (ECN) to IP.
IETF, RF(C2/81, January 1999.

[6] N. Brownlee. SRL: A Language for Describing Traffic Flows and Specifying Actions for Flow Groups.
IETF, RFC2723, October 1999.

[7] N. Brownlee. Traffic Flow Measurement: MIB. IETF,RFC2720, October 1999.



[8] N. Brownlee, C. Mills, and G. Ruth. Traffic Flow Measurement: Architecture. IETF, RFC2722, October
1999.

[9] M3I Project. M3I - Market Managed Multiservice Internet. URL: http://www.m3i.org/.

[10] R. Yavatkar, D. Pendarakis, and R. Guerin. A Framework for Policy-based Admission Control”. IETF,
RFC2753, January 2000.

[11] S. Floyd. TCP and Explicit Congestion Notification. In ACM Computer Communication Review,
volume 24, October 1994.

[12] S. Handelman, S. Stibler, and N. Brownlee. RTFM: New Attributes for Traffic Flow Measurement.
IETF,RFC2724, October 1999.



