Um Ambiente para Engenharia de Tráfego *

Edmundo de Souza e Silva Rosa Maria M. Leão Magnos Martinello †Sidney C. de Lucena ‡ Flávio Pimentel Duarte §

Ana Paula Couto Silva ¶ Kelvin de Freitas Reinhardt

Universidade Federal do Rio de Janeiro,
Depto. de Ciência da Computação, COPPE/Sistemas, NCE
Cx. P. 2324, Rio de Janeiro, RJ - 20001-970 - Brasil
{edmundo,rosam,flaviop,magnos,anapaula,kelvin}@land.ufrj.br

Um dos objetivos principais da engenharia de tráfego é o de desenvolver modelos precisos para prever o impacto do tráfego gerado pelas aplicações sobre os recursos da rede, de forma a evitar a diminuição da qualidade de serviço fornecida aos usuários finais. Estudos de desempenho incluem a determinação do comportamento de buffers, algoritmos de controle de admissão, entre outros. Para conduzir um estudo de desempenho, vários passos são necessários incluindo: o cálculo das características estatísticas do tráfego que irá competir pelos recursos da rede; o desenvolvimento de modelos precisos do tráfego e dos recursos da rede; a geração de tráfego a partir de modelos; e a realização de medições em um ambiente controlado de laboratório ou entre roteadores participantes do experimento.

A ferramenta TANGRAM-II [1, 9] fornece um ambiente ímpar para a modelagem e análise de sistemas de comunicação de dados, permitindo que o usuário descreva o seu sistema em uma linguagem de alto nível e obtenha, a partir do seu modelo, várias medidas de desempenho. TANGRAM-II inclui atualmente: (a) uma interface para descrição de modelos; (b) vários métodos de solução analítica de modelos, incluindo métodos por nós desenvolvidos [5, 4, 6, 8, 3, 7, 2]; (c) um sofisticado simulador que inclui técnicas de eventos raros [10].

Como parte deste ambiente, foi desenvolvido um ferramental específico para dar suporte ao engenheiro de tráfego, tanto na análise de dados coletados como no desenvolvimento de modelos de tráfego, e subsequente obtenção de medidas de interesse. O ambiente

^{*}Este trabalho é parcialmente apoiado pelo CNPq e FAPERJ.

[†]M. Martinello possuía bolsa de mestrado da CAPES e é atualmente apoiado por uma bolsa do CNPq.

[‡]S. de Lucena possuía uma bolsa da CAPES, e atualmente está na RNP.

[§]F. Duarte possui bolsa de mestrado da Capes.

[¶]A. Silva possui bolsa de mestrado do CNPq.

K. Reinhardt possui bolsa de mestrado do CNPq.

permite o cálculo de vários descritores (baseados em estatísticas de primeira e segunda ordem) diretamente de modelos ou a partir de traces coletados na rede. Foi desenvolvido também um gerador de tráfego IP e tráfego ATM a partir de traces ou de modelos previamente definidos pelo usuário. O módulo receptor do gerador de tráfego permite o cálculo de estatísticas tais como distribuição do jitter, proporção de pacotes perdidos entre outras.

Um estudo de caracterização de tráfego e modelagem é constituído de diversas etapas. A Figura 1 exemplifica alguns dos passos importantes neste processo. O lado esquerdo da figura indica a coleta de medidas estatísticas do tráfego da rede, ou diretamente da aplicação em questão. Em seguida é feito o desenvolvimento de um modelo de tráfego e é criado um modelo dos recursos de rede e/ou da aplicação (modelo de desempenho). Finalmente é realizado o cálculo de medidas de interesse, seja por intermédio de soluções analíticas, seja por simulação. A malha de realimentação é incluída para aprimorar o modelo (de tráfego ou de desempenho) de acordo com a análise dos resultados obtidos. As soluções do modelo de desempenho servem para avaliar as técnicas em estudo, incluindo por exemplo a qualidade de serviço obtida pela aplicação.

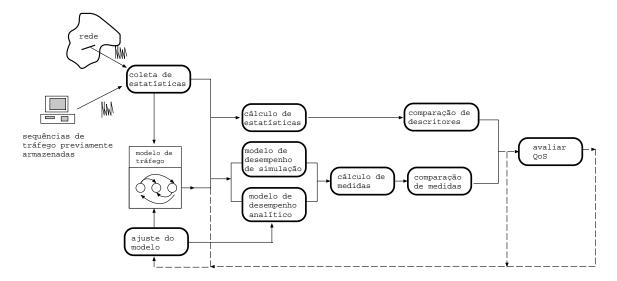


Figura 1: Etapas de um estudo de desempenho

O ambiente de engenharia de tráfego por nós desenvolvido suporta a coleta de estatísticas. Uma vez armazenado um trace de um fluxo de tráfego gerado por uma fonte, um módulo possibilita o cálculo de estatísticas de primeira e segunda ordem do trace. A partir dessas estatísticas, podemos construir um modelo do tráfego. Caso o modelo seja Markoviano, é possível calcular vários descritores analiticamente, obtidos através da solução de um modelo de recompensa (também chamado de modelo de fluido). A ferramenta possui vários métodos para o cálculo de medidas de recompensa (ver [1, 4, 11]).

Usando o ambiente de modelagem, o analista pode comparar descritores obtidos a partir de traces do tráfego real com os calculados analiticamente de um modelo Markoviano. O modelo pode ser então refinado, por exemplo, variando-se parâmetros no sentido de

casar, com maior precisão, estatísticas do tráfego real com as do modelo. O ambiente de modelagem possibilita ainda a simulação de modelos de tráfego não Markovianos: FBM, FARIMA, Pareto, etc.

Uma vez de posse de um modelo satisfatório de fonte, o usuário pode fazer uso de um gerador de tráfego IP ou de células ATM. A ferramenta gera o tráfego especificado pelo usuário, a partir de um computador local para um dado destino (transmissão unicast) ou para um grupo de usuários (transmissão multicast). O usuário pode fornecer o tamanho do quadro a ser enviado, o tamanho dos pacotes (o quadro será fragmentado em pacotes antes de ser enviado) e o tempo total de geração.

Existem três tipos de tráfego que podem ser gerados: tráfego CBR, tráfego definido em um arquivo contendo um trace previamente armazenado (por exemplo obtido pelo simulador da ferramenta) ou a partir de um modelo Markoviano do tipo MMPP. Os pacotes de um quadro são transmitidos ou a taxa máxima de transmissão da placa de rede do computador, ou são uniformemente espalhados no intervalo entre dois quadros.

Atualmente a ferramenta tem sido usada em testes e estudos incluindo usuários na Universidade de Maryland e Universidade de Massachusetts.

Agradecimentos

Agradecemos aos alunos de mestrado Guilherme Dutra Gonzaga Jaime e Jorge Allyson Azevedo e aos alunos bolsistas de iniciação científica Daniel Sadoc Menasche, Fernando Jorge Silveira Filho, Fabiano de Azevedo Portella e Felipe Mendonça Alcure que tem participado do desenvolvimento da ferramenta TANGRAM-II.

Referências

- [1] R.M.L.R. Carmo, L.R. de Carvalho, E. de Souza e Silva, M.C. Diniz, and R.R. Muntz. Performance/Availability Modeling with the TANGRAM-II Modeling Environment. *Performance Evaluation*, 33:45–65, 1998.
- [2] Rosa M.L.R. Carmo, E. de Souza e Silva, and S.C. de Lucena. Cálculo de Descritores de Tráfego em Modelos Markovianos de Fontes Multimídia. In SBRC'97, pages 189– 204, 1997.
- [3] João A.N. da Silva and Rosa M. M. Leão. Estudo de um Método para Análise Transiente de Modelos Markovianos de Sistemas de Comunicação. In 16th Simpósio Brasileiro de Redes de Computadores, pages 742–761, Maio 1998.
- [4] Carlos E. F. de Britto, Edmundo de Souza e Silva, Morganna C. Diniz, and Rosa M. M. Leão. Análise Transiente de Modelos de Fonte Multimídia. In 18th Simpósio Brasileiro de Redes de Computadores, pages 519–534, Maio 2000.

- [5] E. de Souza e Silva and H.R. Gail. Calculating availability and performability measures of repairable computer systems using randomization. *Journal of the ACM*, 36(1):171–193, 1989.
- [6] E. de Souza e Silva and H.R. Gail. An algorithm to calculate transient distributions of cumulative rate and impulse based reward. *Stochastic Models*, 14(3):509–536, 1998.
- [7] E. de Souza e Silva and H.R. Gail. Transient Solutions for Markov Chains. In W. Grassmann, editor, *Computational Probability*, pages 44–79. Kluwer, 2000.
- [8] E. de Souza e Silva, R.M.M. Leão, and R. Marie. An Efficient Approximation Technique for Calculating Transient Reward Measures. In *Proceedings of The Fourth International Workshop on Performability Modeling of Computer and Communication Systems (PMCCS4)*, pages 16–19, Setembro 1998.
- [9] Edmundo de Souza e Silva and Rosa M. M. Leão. The Tangram-II Environment. In Computer Peformance Evaluation Modelling Techniques and Tools 11th International Conference (TOOLS2000), volume 1786, pages 366–369. Springer, Março 2000.
- [10] D. R. Figueiredo. O módulo de simulação da ferramenta TANGRAM-II: Suporte para medidas com recompensa, recursos de eventos raros e aplicação a modelos de redes multimídia. Master's thesis, COPPE/UFRJ, Junho 1999.
- [11] Rosa M. M. Leão, Edmundo de Souza e Silva, and Sidney C. de Lucena. A Set of Tools for Traffic Modeling, Analysis and Experimentation. In Computer Peformance Evaluation Modelling Techniques and Tools 11th International Conference (TOOLS 2000), volume 1786, pages 40-55. Springer, Março 2000.