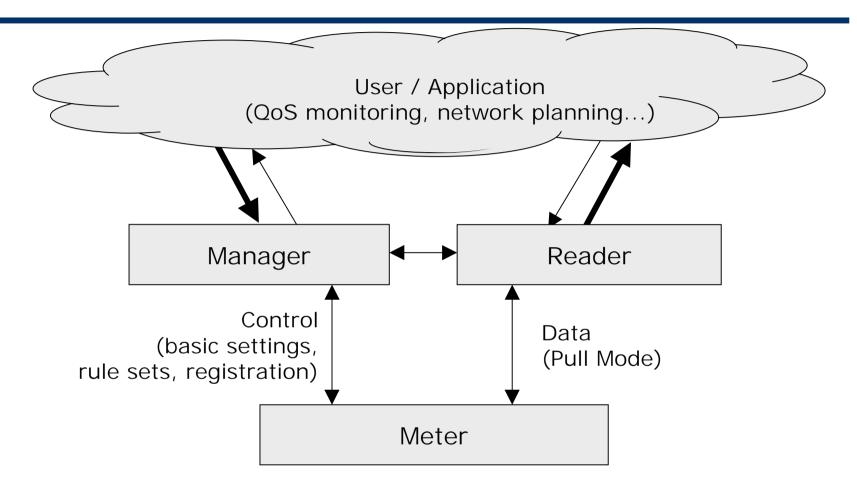
Integrating IP Traffic Flow Measurement *

Marcelo Pias & Jon Crowcroft

Department of Computer Science UCL - University College London London, UK {m.pias,j.crowcroft}@cs.ucl.ac.uk

Juergen Quittek & Marcus Brunner


C&C Research Laboratories
NEC Europe Ltd.
Heidelberg, Germany
{quittek,brunner}@ccrle.nec.de

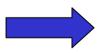
Introduction

Realtime Flow Measurements architecture (RTFM)

- Defined by the IETF in RFC2722, Meter MIB [RFC2720]
- Objectives:
 - Specifies ways for flow measurements based on metrics useful for:
 - Understanding the behaviour of existing networks
 - Network planning for development and expansion
 - Quantification of network performance
 - Verifying the quality of network service (QoS)
 - Common ground for accounting in general
- Metrics:
 - Simple metrics: volume
 - Distributions: inter-arrival times, packet size, packet-rate...
 - List-valued: DSCodepoint...
 - Packet-header traces: ECN counters...
 - QoS metrics: delay, loss and jitter

Introduction

- Architecture Implementation
 - ✓ NeTraMet (University of Auckland): free
 - ✓ IBM RTFM WRNP2 2001


Motivation

- The interface for flow measurements defined by the RTFM architecture and offered by the Meter MIB is powerful.
- However, it is not always really easy to have
 - interaction between manager, reader, and meter
 - rule set specifications are procedurally defined
 - writing rule sets is a non-trivial task
 - meter delivers measured traffic data in pull mode only
- Several management applications require less functionality, and they would benefit from a simpler interface.

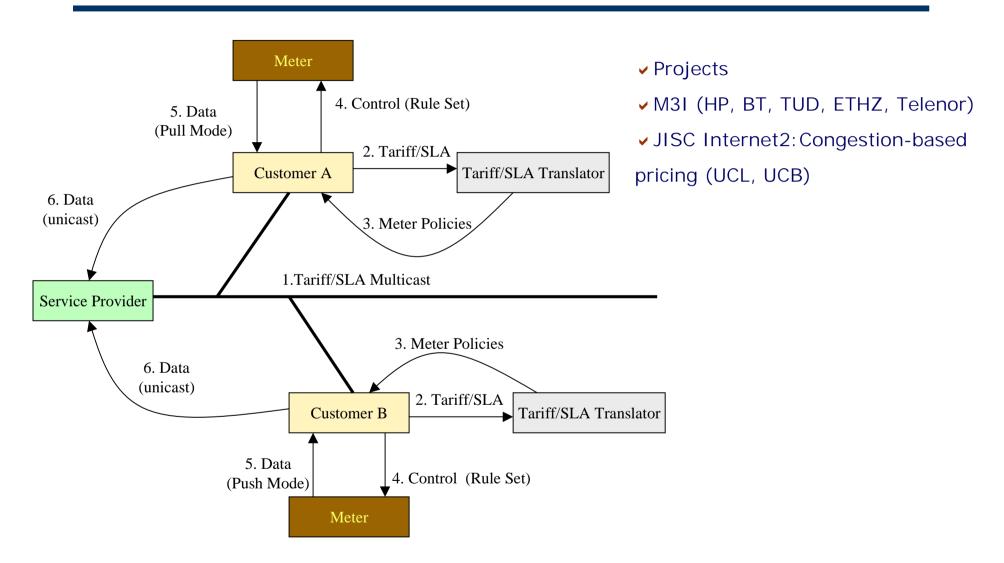
Rule Sets

- Single rule:<attribute> & <mask> = <value> : <action> , <index> ;
- Actions:

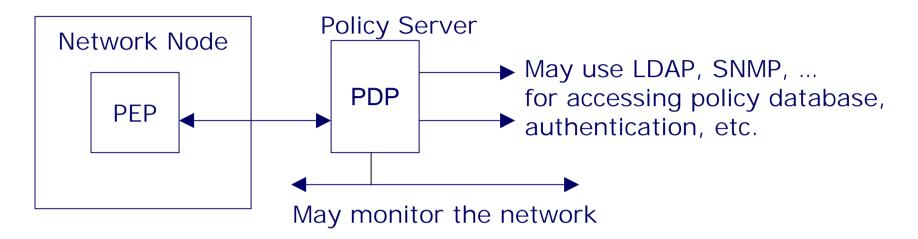
 Ignore, NoMatch, Count, CountPkt, Return, GoSub, GoSubAct, Assign,
 AssignAct, Goto, GotoAct, PushRuleTo, PushRuleToAct, PushPktTo,
 PushPktToAct
- Format statement
- Statistics statement
- Example


```
SET 13
RULES
SourcePeerType & 255 = IP: PushtoAct, IP_pkt;
Null & 0 = 0: Ignore, 0;

#
IP_pkt: # Tally IP traffic by (Class C) subnet
SourcePeerAddress & 255.255.255.0 = 0: PushPktToAct, Next;
DestPeerAddress & 255.255.255.0 = 0: CountPkt, 0;


#
FORMAT FlowRuleSet FlowIndex FirstTime " "
SourcePeerType SourcePeerAddress DestPeerAddress " "
SourceTransType SourceTransAddress DestTransAddress " "
ToPDUs FromPDUs " " ToOctets FromOctets;
```

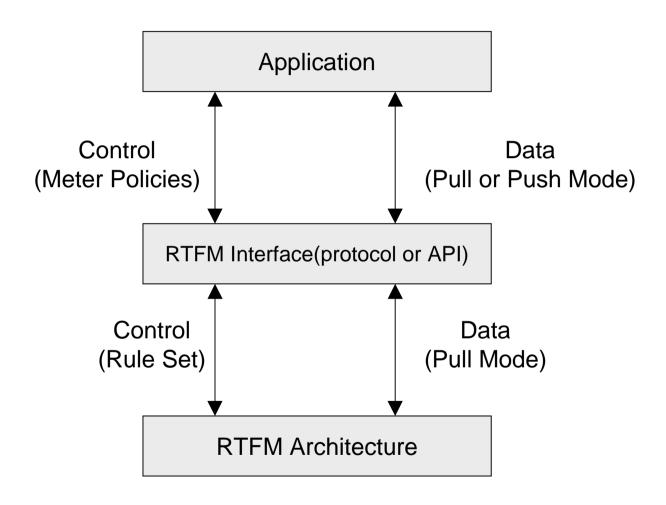
RTFM Architecture Applications


There are two typical kinds of applications:

- 1 Plain (standalone) traffic measurement applications
 - well supported by the architecture
 - high flexibility in rule definition
 - Rule files written manually or in SRL
 - Traffic data is read in pull mode
 - metered data stored for further processing
- 2 Applications with integrated traffic measurement
 - typically less low-level metering functionality required
 - automatic rule set generation
 - push mode for traffic data may be desirable
 - gathering of traffic data for immediate processing

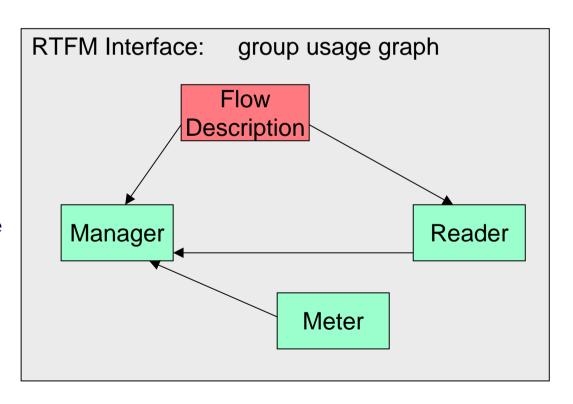
Accounting, Charging and QoS monitoring

Policy Server



- Policy server according to policy framework RFC 2753
- May require current overall traffic and current individual traffic information in order to decide on admission control, QoS assignments, and traffic engineering actions.
- Projects:
 - European Union project MobiVAS where NEC is a partner

Requirements for those Applications


- Control traffic measurement on a high level of abstraction
- Abstraction from details of RTFM architecture as high as possible
 - Simplification of model
 - Simplification of meter policies (rule sets)
- Abstraction as low as necessary in order to provide the functionality required by different kinds of applications
 - Accounting
 - QoS monitoring
 - **—** . . .
- Gathering traffic data in pull and push mode

Approach

Interface Design

- 5 Groups of data structures and functions
 - Flow Attribute
 - Flow Description
 - Manager
 - Reader
 - Meter
- Limitation:
 - Trade off in simplicity against functionality
 - Procedural x Declarative
 Flow Description

Flow Description

• Declarative specification instead of procedural rule sets

sourceIPAddress	destinationIPAddress	sourceMask	destinationMask
transportType	sourcePort	destinationPort	direction
FlowAttribute 1			
FlowAttribute 2			
FlowAttribute n			

Future Work

IETF work

- 49th IETF question: map to (Protocol, MIB, API or none)?
- Decision on mapping to a protocol for exporting flow data from routers
- IP Flow Export (IPFX) protocol
- BOF for a new WG in the next IETF meeting (London Aug 2001)
- IPFX WG contributions from:
 - NetFlow from Cisco
 - LFAP from Riverstone
 - RTFM architecture + this interface

Collaborative work with RNP2 WGs?

- Where this work might be helpful within the RNP2 WGs?
- WGs currently working with QoS, traffic measurements and policybased management?
- The RTFM architecture impl. + this interface are freely available (GNU)
- Contributions for the IPFX WG are welcome

URLS

- M3I project
 - http://www.m3i.org
- RTFM Arch
 - http://www2.auckland.ac.nz/net/Internet/rtfm
- NeTraMet: RTFM implementation
 - http://www2.auckland.ac.nz/net/NeTraMet
- IETF I-D presented in these slides
 - http://www.cs.ucl.ac.uk/staff/rtfm
 - http://search.ietf.org/internet-drafts/draft-quittek-rtfm-generic-interface-00.txt
- Internet2/JISC Congestion-based Project
 - info available by Aug 2001