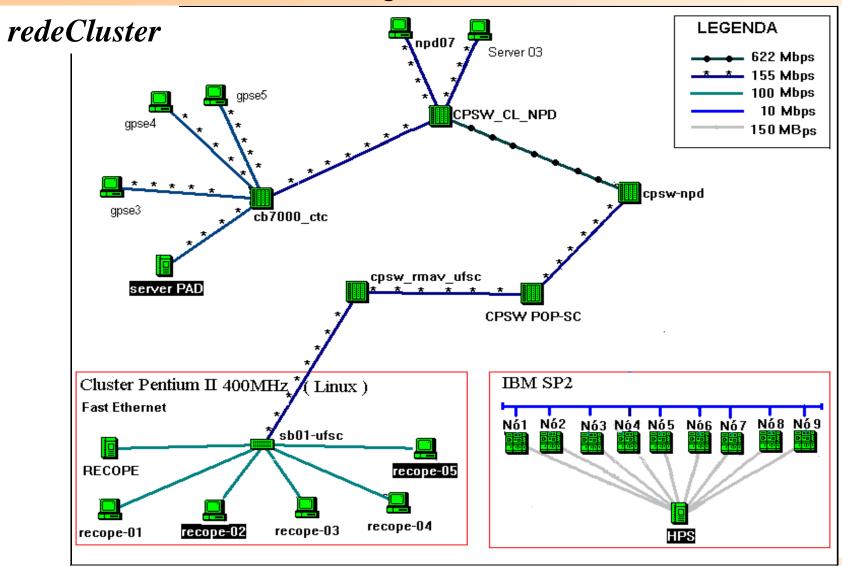
Medidas de Latência em Ambientes de Processamento de Alto Desempenho

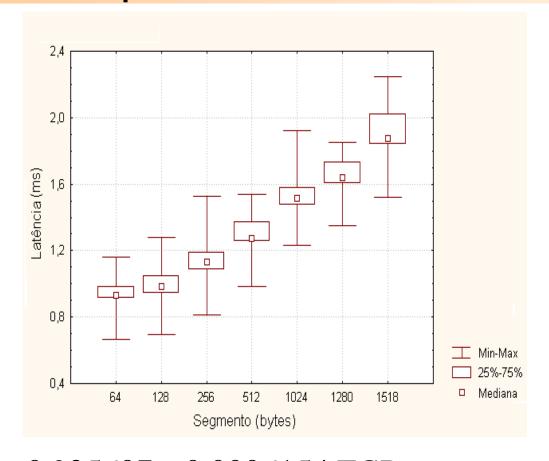

Solange Teresinha Sari solange@npd.ufsc.br

André Barros Sales andreb@inf.ufsc.br

Carlos Backer Westphall westphal@inf.ufsc.br

Universidade Federal de Santa Catarina - UFSC Florianópolis – SC

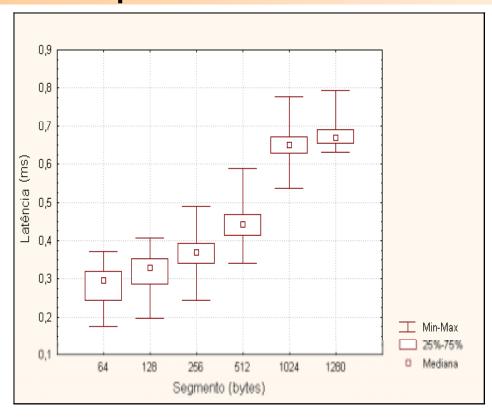
Descrição da Rede


Medidas de Latência em Ambientes de Processamento de Alto Desempenho

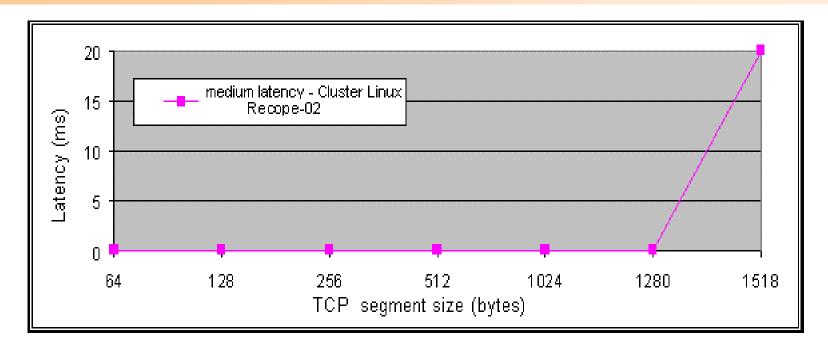
Coleta de Dados

✓ Netperf

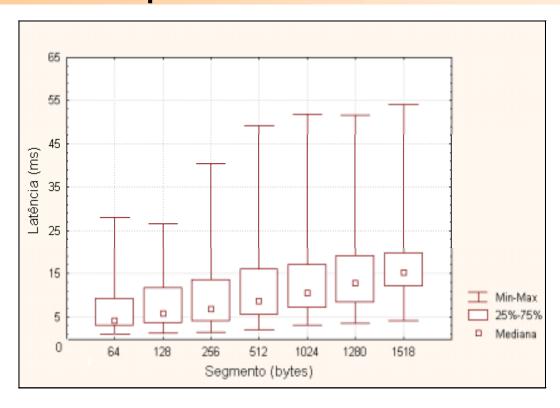
- segment size − 64, 128, 256, 512, 1024, 1280 e 1518 bytes, de acordo com a RFC 2544;
- Tempo de execução 70 segundos, de acordo com a RFC 2544;
- Número de repetições 20 vezes, quantidade representativa para a média, de acordo com a RFC 2544;
- Medidas seqüenciais;
- MTU = 1500 *octets*; e
- TCP window size valor default do sistema, de acordo com a RFC1323 "*Large Windows*".


Análise para o Cluster Al X

Lat $_TCP = 0.925607 + 0.000615 * TCP _ segment _ size$ coeficiente de determinação $R^2 = 0.834197$


Medidas de Latência em Ambientes de Processamento de Alto Desempenho

Análise para o Cluster Linux


Lat _ TCP = 0.273835 + 0.000336 * TCP _ segment _ size coeficiente de determinação $R^2 = 0.913747$

... Linux

✓ Um erro de implementação foi reconhecido no algoritmo Nagle para o protocolo TCP protocol no Kernel 2.12

Análise para o Cluster SP 2

 $Lat _TCP = 1,735339 + 0,000677 * TCP _segment _size$

coeficiente de determinação, $R^2 = 0.231976$

Resultado dos Clusters

	Linux	AIX		SP2	
Protocol Segment	R ² 0,91	R ² 0,83	R ² 0,85	R ² 0,01	R ² 0,23
	TCP	UDP	TCP	UDP	TCP
64	0.295339	0.964967	0.935575	1.778718	3.00348
128	0.316843	1.004327	0.976279	1.822046	3.029656
256	0.359851	1.083047	1.057687	1.908702	3.082008
512	0.445867	1.240487	1.220503	2.082014	3.186712
1.024	0.617899	1.555367	1.546135	2.428638	3.39612
1.280	0.703915	1.712807	1.708951	2.60195	3.500824
1.580	0.783883	1.859177	1.860319	2.763076	3.598166

Medidas de Latência em Ambientes de Processamento de Alto Desempenho

Conclusões

- ✓ Das análises dos clusters podemos concluir que existe um forte relacionamento entre o tamanho do segmento e a latência para ambientes livres de colisões.
- ✓ Analisando cada cluster, a menor latência é encontrada no Cluster LINUX com rede Fast-Ethernet.
- ✓ Embora a capacidade nominal da vazão no Cluster AIX seja maior que no Cluster Linux, fatores como negociação, encapsulamento contribuem para aumentar a latência.

Atividades Futuras

✓ Avaliar a configuração dos cluster a partir da medidas de latência, a fim de customizar o ambiente.

✓ Utilizar as medidas de latência obtidas para otimizar a decomposição e o número de processadores no modelo de processamento paralelo.

Referências

- ✓ <u>Distributed Processing of a Regional Prediction Model</u>,
 - JOHNSON, Kenneth W. BAUER, Jeff, RICCARDI, Gregory A., XUE, Ming, DROEGEMEEIER, Kelvin K.,
 - Monthly Weather Review, 122: 2558-2572, 1994.
- ✓ Comparação de Desempenho entre um Cluster PC-Linux e um SP 2 em simulações com o Modelo ARPS,
 - HAAS, Reinaldo, AMBRIZZI, Tércio, FILHO, Augusto José Pereira,
 - XI Congresso Brasileiro de Meteorologia, Centro Cultural da UERJ RJ, Outubro de 2000.