

Avaliação do Comutador IBM 8265

- Objetivos
 - Avaliar o IBM 8265, utilizado na implantação do Backbone RNP2;
 - Investigar características básicas de funcionamento, entre elas:
 - Traffic-shaping;
 - Policing;
 - Alocação de buffers por VC;
 - Funcionamento de ABR (não executado).
 - Dois tipos de interface (módulos) utilizados nos testes:
 - Placa OC-3 (8265);
 - Placa WAN 2 (8260).

Avaliação do Comutador IBM 8265

- Testes Realizados
 - Foram executados em 3 etapas
 - VC UBR estressando a capacidade do VP;
 - VC UBR estressando a capacidade do VP na presença de um VC CBR de 2 Mbps com tráfego a 50% do PCR;
 - VC UBR estressando a capacidade do VP na presença de um VC CBR de 2 Mbps com tráfego a 100% do PCR.
 - Uso da ferramenta do Almadem (TMG);
 - Distribuição em http://www.land.ufrj.br.

Núcleo de Computação Eletrônica / UFRJ Topologia Switch Marconi Switch IBM 8265 **ASX-1000** OC-3 PVC **UBR** VPC LINK Estação Sun/Solaris 1 VP CBR PVC 5 Mbps CBR OC-3 Loop **Físico** Estação Sun/Solaris 2

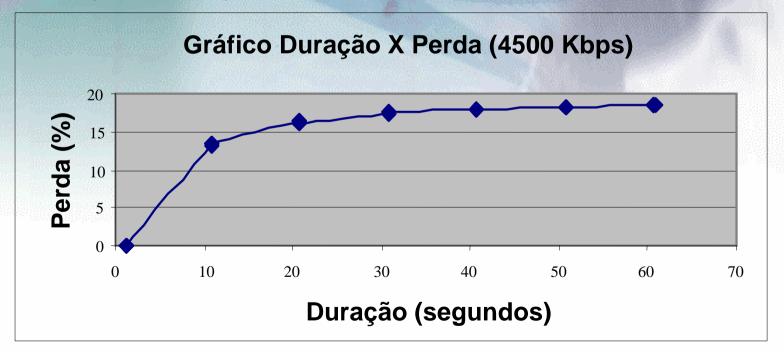
- Habilitados Shaping (VPC_LINK/IBM) e Policing (VP/Marconi);
- Cada etapa de teste executada duas vezes, uma para cada tipo de interface;
- Geração de tráfego (TMG) nas estações, passando pelos VPs nos comutadores, e retornando às mesmas através de um loop físico colocado no comutador Marconi;
- Taxas crescentes de tráfego geradas para identificar início de descarte de células;
- Cálculo do limite inferior da ocupação média em células do buffer de shaping.

- Conclusões
 - Análise para placa OC-3 Nativa

Monitor_pvc2		RESUMO DAS MEDIÇÕES				
E (µs)	PCR (Kbps)	V (µs)	Perda (%)	T (atraso médio das PDU em ms)	RX_ME (taxa efetiva de recepção em kbps)	
6360	1000	6370	0	1,55	997	
3180	2000	3190	0	1,55	1993	
1413	4500	1428	0	1,65	4452	
1270	5000	1285	0	3,49	4954	
1211	5250	1290	0	4,17	4940	
1000	6360	1317	20	44,56	4966	
636	10000	1245	48	44,70	4968	

- Conclusões (cont.)
 - Análise para placa WAN 8260

TEÓRICO		RESUMO DAS MEDIÇÕES				
E (µs)	PCR (kbps)	V (µs)	Perda (%)	T (atraso médio das PDU em ms)	RX_ME (taxa efetiva de recepção em kbps)	
6360	1000	6363	0	1,82	999	
3180	2000	3184	0	1,82	1997	
1413	4500	1416	0	1,83	4490	
1270	5000	1382	5,6	546	4606	
1211	5250	1382	10,3	564	4606	
1000	6360	1382	26	579	4606	


- Conclusões (cont.)
 - Tráfego UBR consegue excursionar até o valor correspondente à sobra da banda do VP não consumida pelo tráfego CBR;
 - Quando a taxa efetiva do tráfego UBR é superior a essa sobra:
 - Ocorrem perdas;
 - Aumenta atraso no retorno das PDU's comprovando armazenamento em função do shaping.
 - Quanto às características de cada módulo:

Módulo	Shaping	Granularidade	Buffer de Shaping
OC-3	Por VP e Por VC	19.5 Kbps (19.5 * 256 = 4992)	500
WAN 2	Somente por porta	512 Kbps (512 * 9 = 4608)	6000

- Conclusões (cont.)
 - Perda observada está de acordo com o valor teórico calculado.
 - (5500 4608)/4500 ≈ 19.8 %

Questões e sugestões

- No backbone RNP2, todos os tráfegos entrantes deverão sofrer preferencialmente shaping nas saídas dos próprios roteadores, já que não se consegue fazer shaping individualmente em VP na porta WAN;
- Verificar shaping no IBM 2216 e no Cisco;
- Não conseguimos alterar configuração de buffers para testar política de descarte ⇒ SNMP?
- Gerência: em aberto;
- Suporte à ABR? Comando para habilitar esse tipo de tráfego no PVC?
- Testar fazer shaping em porta OC-3 antes de repassar para a placa
 WAN. Exige duas portas extras e conexão externa entre elas.

Proposta de Trabalho Colaborativo

- Estes experimentos deram subsídios à implantação do Backbone ATM da RNP;
- Dar continuidade a experimentos que envolvam avaliação de equipamentos/tecnologias a serem utilizados no Backbone RNP2.

